On prediction errors in regression models with nonstationary regressors

نویسنده

  • Ching-Kang Ing
چکیده

Abstract: In this article asymptotic expressions for the final prediction error (FPE) and the accumulated prediction error (APE) of the least squares predictor are obtained in regression models with nonstationary regressors. It is shown that the term of order 1/n in FPE and the term of order log n in APE share the same constant, where n is the sample size. Since the model includes the random walk model as a special case, these asymptotic expressions extend some of the results in Wei (1987) and Ing (2001). In addition, we also show that while the FPE of the least squares predictor is not affected by the contemporary correlation between the innovations in input and output variables, the mean squared error of the least squares estimate does vary with this correlation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kernel-based Inference in Time-varying Coefficient Cointegrating Regression

This paper studies nonlinear cointegrating models with time-varying coefficients and multiple nonstationary regressors using classic kernel smoothing methods to estimate the coefficient functions. Extending earlier work on nonstationary kernel regression to take account of practical features of the data, we allow the regressors to be cointegrated and to embody a mixture of stochastic and determ...

متن کامل

Nonlinear econometric models with cointegrated and deterministically trending regressors

This paper develops an asymptotic theory for a general class of nonlinear nonstationary regressions, extending earlier work by Phillips and Hansen (1990) on linear cointegrating regressions.The model considered accommodates a linear time trend and stationary regressors, as well as multiple I(1) regressors. We establish consistency and derive the limit distribution of the nonlinear least squares...

متن کامل

TPS 2013 (1).indd

Modeling of complex systems is commonly confronted with high dimensional set of independent variables. Similarly, econometric models are usually built using time series data that often exhibit nonstationarity due to the impact of some policies and other economic forces. In both cases, linear regression modeling may yield unstable least squares estimates of the regression coeffi cients. Principa...

متن کامل

Functional Coefficient Nonstationary Regression ∗

This paper studies a general class of nonlinear varying coefficient time series models with possible nonstationarity in both the regressors and the varying coefficient components. The model accommodates a cointegrating structure and allows for endogeneity with contemporaneous correlation among the regressors, the varying coefficient drivers, and the residuals. This framework allows for a mixtur...

متن کامل

ROBUST NONSTATIONARY REGRESSION by

This paper provides a robust statistical approach to nonstationary time series regression and inference. Fully modified extensions of traditional robust statistical procedures are developed that allow for endogeneities in the nonstation-ary regressors and serial dependence in the shocks that drive the regressors and the errors that appear in the equation being estimated. The suggested estima-to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007